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¡ Three basic stages:
§ 1) Pre-processing

§ Construct a matrix representation of the graph

§ 2) Decomposition
§ Compute eigenvalues and eigenvectors of the matrix
§ Map each point to a lower-dimensional representation 

based on one or more eigenvectors

§ 3) Grouping
§ Assign points to two or more clusters, based on the new 

representation
¡ But first, let’s define the problem
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¡ Undirected graph 𝑮(𝑽, 𝑬):

¡ Bi-partitioning task:
§ Divide vertices into two disjoint groups 𝑨,𝑩

¡ Questions:
§ How can we define a “good” partition of 𝑮?
§ How can we efficiently identify such a partition?
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¡ What makes a good partition?
§ Maximize the number of within-group 

connections
§ Minimize the number of between-group 

connections
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¡ Express partitioning objectives as a function 
of the “edge cut” of the partition

¡ Cut: Set of edges with one endpoint in each 
group:
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weight, otherwise, all wij∈{0,1}



¡ Criterion: Minimum-cut
§ Minimize weight of connections between groups

¡ Degenerate case:

¡ Problem:
§ Only considers external cluster connections
§ Does not consider internal cluster connectivity
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arg minA,B cut(A,B)

“Optimal” cut
Minimum cut



¡ Criterion: Conductance [Shi-Malik, ’97]
§ Connectivity between groups relative to the density 

of each group

𝒗𝒐𝒍(𝑨): total weighted degree of the nodes in 𝑨: 
𝒗𝒐𝒍 𝑨 = ∑𝒊∈𝑨𝒌𝒊 (number of edge end points in 𝑨)

n Why use this criterion?
n Produces more balanced partitions

¡ How do we efficiently find a good partition?
§ Problem: Computing best conductance cut is NP-hard
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[Shi-Malik]



¡ A: adjacency matrix of undirected G
§ Aij =1 if (𝒊, 𝒋) is an edge, else 0

¡ x is a vector in Ân with components (𝒙𝟏, … , 𝒙𝒏)
§ Think of it as a label/value of each node of 𝑮

¡ What is the meaning of A× x?

¡ Entry yi is a sum of labels xj of neighbors of i
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¡ jth coordinate of A× x :
§ Sum of the x-values 

of neighbors of j
§ Make this a new x-value at node j

¡ Spectral Graph Theory:
§ Analyze the “spectrum” of matrix representing 𝑮
§ Spectrum: Eigenvectors 𝒙(𝒊) of a graph, ordered by 

the magnitude (strength) of their corresponding 
eigenvalues 𝝀𝒊:
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𝑨 ⋅ 𝒙 = 𝝀 ⋅ 𝒙

Note: We sort 𝝀𝒊 in ascending (not descending) order!



¡ Suppose all nodes in 𝑮 have degree 𝒅
(𝑮 is 𝒅-regular) and 𝑮 is connected

¡ What are some eigenvalues/vectors of 𝑮? 
𝑨× 𝒙 = 𝝀 ⋅ 𝒙 What is l?  What x?
§ Let’s try: 𝒙 = (𝟏, 𝟏, … , 𝟏)
§ Then: 𝑨 ⋅ 𝒙 = 𝒅, 𝒅,… , 𝒅 = 𝝀 ⋅ 𝒙.  So: 𝝀 = 𝒅
§ We found an eigenpair of 𝑮: 
𝒙 = (𝟏, 𝟏, … , 𝟏), 𝝀 = 𝒅

¡ 𝒅 is the largest eigenvalue of 𝑨 (see next slide)
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Remember the meaning of 𝒚 = 𝑨× 𝒙:
Note, this is just one eigenpair. 
An n by n matrix can have up to n eigenpairs.
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¡ 𝑮 is 𝒅-regular connected, 𝑨 is its adjacency matrix
¡ Claim: 

§ (1) 𝒅 has multiplicity of 1 (there is only 1 eigenvector 
associated with eigenvalue 𝒅)

§ (2) d is the largest eigenvalue of 𝑨
¡ Proof:

§ To obtain value eigval 𝒅 we needed 𝒙𝒊 = 𝒙𝒋 for every 𝑖, 𝑗
§ This means 𝒙 = 𝑐 ⋅ (1,1, … , 1) for some const. 𝑐
§ Define: Set 𝑺 = nodes 𝒊 with maximum value of 𝒙𝒊
§ Then consider some vector 𝒚 which is not a multiple of 

vector (𝟏,… , 𝟏). So not all nodes 𝒊 (with labels 𝒚𝒊 ) are in 𝑺
§ Consider some node 𝒋 ∈ 𝑺 and a neighbor 𝒊 ∉ 𝑺 then 

node 𝒋 gets a value strictly less than 𝒅
§ So 𝑦 is not eigenvector! And so 𝒅 is the largest eigenvalue!
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Details!



¡ What if 𝑮 is not connected?
§ 𝑮 has 2 components, each 𝒅-regular

¡ What are some eigenvectors?
§ 𝒙 = Put all 𝟏s on 𝑪 and 𝟎s on 𝑩 or vice versa

§ 𝒙′ = 𝟏,… , 𝟏, 𝟎, … , 𝟎 𝑻 then 𝐀 ⋅ 𝒙′ = 𝒅,… , 𝒅, 𝟎, … , 𝟎 𝑻

§ 𝒙′′ = 𝟎,… , 𝟎, 𝟏, … , 𝟏 𝑻 then 𝑨 ⋅ 𝒙′′ = 𝟎,… , 𝟎, 𝒅,… , 𝒅 𝑻

§ And so in both cases the corresponding 𝝀 = 𝒅
¡ A bit of intuition:
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§ If the d-regular graph is connected (right  example) then 
we already know that 𝒙𝒏 = (𝟏,…𝟏) is an eigenvector

§ Eigenvectors are orthogonal so then the components of 
𝒙𝒏P𝟏 must sum to 0
§ Why? 𝒙𝒏 ⋅ 𝒙𝒏P𝟏 = 𝟎 then ∑𝒊 𝒙𝒏 𝒊 ⋅ 𝒙𝒏P𝟏[𝒊] = ∑𝒊 𝒙𝒏P𝟏 [𝒊] =0
§ 𝒙𝒏P𝟏 “splits” the nodes into two groups

§ 𝒙𝒏P𝟏 𝒊 > 𝟎 vs. 𝒙𝒏P𝟏 𝒊 < 𝟎
§ So we in principle could look at the eigenvector of the 2nd largest 

eigenvalue and declare nodes with positive label in C and negative 
label in B. (but there are still many details for us to figure out here)
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¡ Adjacency matrix (A):
§ n´ n matrix
§ A=[aij], aij=1 if edge between node i and j

¡ Important properties: 
§ Symmetric matrix
§ Has 𝒏 real eigenvalues
§ Eigenvectors are real-valued and orthogonal
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¡ Degree matrix (D):
§ n´ n diagonal matrix
§ D=[dii], dii = degree of node i
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5 0 0 0 0 3 0

6 0 0 0 0 0 2



¡ Laplacian matrix (L):
§ n´ n symmetric matrix

¡ What is trivial eigenpair?
§ 𝒙 = (𝟏,… , 𝟏) then 𝑳 ⋅ 𝒙 = 𝟎 and so 𝝀 = 𝝀𝟏 = 𝟎

¡ Important properties of 𝑳:
§ Eigenvalues are non-negative real numbers
§ Eigenvectors are real (and always orthogonal)
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4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



(a) All eigenvalues are ≥ 0
(b) 𝑥\𝐿𝑥 = ∑8: 𝐿8:𝑥8𝑥: ≥ 0 for every 𝑥
(c) 𝐿 can be written as 𝐿 = 𝑁\ ⋅ 𝑁
§ That is, 𝐿 is positive semi-definite

¡ Proof: (the 3 facts are saying the same thing)
§ (c)Þ(b): 𝑥\𝐿𝑥 = 𝑥\𝑁\𝑁𝑥 = 𝑁𝑥 \ 𝑁𝑥 ≥ 0

§ As it is just the square of length of 𝑁𝑥
§ (b)Þ(a): Let 𝝀 be an eigenvalue of 𝑳. Then by (b)
𝑥\𝐿𝑥 ≥ 0 so 𝑥\𝐿𝑥 = 𝑥\𝜆𝑥 = 𝜆𝑥\𝑥Þ 𝝀 ≥ 𝟎

§ (a)Þ(c): is also easy! Do it yourself.
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¡ Fact: For symmetric matrix M:

¡ What is the meaning of min xTL x on G?
§ 𝑥\𝐿 𝑥 = ∑8,:;<= 𝐿8: 𝑥8𝑥: = ∑8,:;<= 𝐷8: − 𝐴8: 𝑥8𝑥:
§ = ∑8 𝐷88𝑥8` − ∑ 8,: ∈@ 2𝑥8𝑥:

§ = ∑ 8,: ∈@(𝑥8` + 𝑥:` − 2𝑥8𝑥:) = ∑ 𝒊,𝒋 ∈𝑬 𝒙𝒊 − 𝒙𝒋
𝟐
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Node 𝒊 has degree 𝒅𝒊. So, value 𝒙𝒊𝟐 needs to be summed up 𝒅𝒊 times.
But each edge (𝒊, 𝒋) has two endpoints so we need 𝒙𝒊𝟐 +𝒙𝒋𝟐

�2 = min
x : xT w1=0

xT Mx
xT x

(w1 is eigenvector corresponding to λ1)

See next slide
for the proof.
Deriving this is
a HW problem.



¡ Write 𝑥 in basis of eigenvecs 𝑤<,𝑤`, … ,𝑤= of 𝑴 and 𝜆8
are corresponding eigenvalues. So, 𝑥 = ∑8= 𝛼8𝑤8

¡ Then we get: 𝑀𝑥 = ∑8 𝛼8𝑀𝑤8 = ∑8 𝛼8𝜆8𝑤8
¡ So, what is 𝒙𝑻𝑴𝒙?

§ 𝑥\𝑀𝑥 = ∑8 𝛼8𝑤8 \ ∑8 𝛼8𝜆8𝑤8 = ∑8: 𝛼8𝜆:𝛼:
= ∑8 𝛼8`𝜆8𝑤8\𝑤8 = ∑𝒊 𝝀𝒊𝜶𝒊𝟐

§ Want minimize this over all unit vectors 𝒘: 
𝒘 = min over choices of (𝛼<, …𝛼=) so that:
§ xk𝑤< = 0, rewrite it as (∑8 𝛼8𝑤8) ⋅ 𝑤< = 0 and remember that 
𝑤8\𝑤: = 0 (because 𝑤 are eigenvectors). Then 𝛼< = 0

§ ∑𝛼8` = 1 (unit length)

§ So, to minimize this, set 𝜶𝟐 = 𝟏 and the rest to 0 ∑𝒊 𝝀𝒊𝜶𝒊𝟐 = 𝝀𝟐
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𝝀𝒊𝒘𝒊

= 𝟎 if 𝒊 ≠ 𝒋, 1 otherwise

Details!
�2 = min

x : xT w1=0

xT Mx
xT x

𝒙𝑻 𝑴𝒙



¡ What else do we know about x?
§ 𝒙 is unit vector: ∑𝒊 𝒙𝒊𝟐 = 𝟏
§ 𝒙 is orthogonal to 1st eigenvector (𝟏, … , 𝟏) thus: 
∑𝒊 𝒙𝒊 ⋅ 𝟏 = ∑𝒊 𝒙𝒊 = 𝟎

¡ Remember:
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�2 = min
x : xT w1=0

xT Mx
xT x



¡ Back to finding the optimal cut
¡ Express partition (A,B) as a vector

𝒚𝒊 = m+𝟏−𝟏
𝒊𝒇 𝒊 ∈ 𝑨
𝒊𝒇 𝒊 ∈ 𝑩

¡ Enforce that |A| = |B| à 𝚺𝒊𝒚𝒊 = 𝟎
§ Equivalent to being orthogonal to the trivial eigenvector (𝟏, … , 𝟏)

¡ We can minimize the cut of the partition by finding 
a vector y that minimizes:
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𝑦8 = −1 0 𝑦: = +1
jCan’t solve exactly. Let’s relax 𝒚

and allow it to take any real value.

arg min
v∈ P<,w< x 𝑓(𝑦) = 9

8,: ∈@

𝑦8 − 𝑦:
`
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n 𝝀𝟐 = 𝐦𝐢𝐧𝒚 𝒇 𝒚 : The minimum value of 𝒇(𝒚) is 
given by the 2nd smallest eigenvalue λ2 of the 
Laplacian matrix L

n 𝐱 = 𝐚𝐫𝐠𝐦𝐢𝐧𝐲 𝒇 𝒚 : The optimal solution for y is 
given by the eigenvector 𝒙 corresponding to λ2, 
referred to as the Fiedler vector

n Can use sign of 𝑥𝑖 to determine cluster assignment 
of node 𝑖

𝑥8 0 x𝑥:
ji

min
y�Rn :

�
i yi=0

f(y) =
�

(i,j)�E(yi � yj)2 = yT Ly

Slide 18

�2 = min
x : xT w1=0

xT Mx
xT x

∑8 𝑦8` = 1



¡ Suppose there is a partition of G into A and B 
where 𝐴 ≤ |𝐵|, s.t. “conductance” of the cut 
(A,B) is  𝜷 = (# ����� ���� � �� �)

�
then 𝝀𝟐 ≤ 2𝛽

§ This is the approximation guarantee of the spectral 
clustering: Spectral finds a cut that has at most twice the 
conductance as the optimal one of conductance 𝜷.

¡ Proof: 
§ Let: 𝒂 = |𝑨|, 𝒃 = |𝑩| and 𝒆 = # edges from 𝑨 to 𝑩
§ Enough to choose some 𝒙𝒊 based on 𝑨 and 𝑩 such that: 

𝜆` ≤
∑ ��P��

�

∑� ��
� ≤ 2𝛽 (while also ∑8 𝑥8 = 0)

10/8/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23𝝀𝟐 is only smaller 

Details!

Note: |A|<|B|



¡ Proof (continued): 

§ 1) Let’s set: 𝒙𝒊 = �
− 𝟏
𝒂

+ 𝟏
𝒃

𝒊𝒇 𝒊 ∈ 𝑨
𝒊𝒇 𝒊 ∈ 𝑩

§ Let’s quickly verify that ∑8 𝑥8 = 0: 𝑎 − <
� + 𝑏 <

� = 𝟎

§ 2) Then:
∑ ��P��

�

∑� ��
� =

∑�∈�,�∈ 
¡
¢w

¡
£
�

� P¡£
�
w� ¡

¢
� =

�⋅ ¡£w
¡
¢
�

¡
£w

¡
¢

=

𝑒 <
�
+ <

�
≤ 𝑒 <

�
+ <

�
= 𝒆 𝟐

𝒂
≤ 𝟐𝛽

10/8/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

Details!

Which proves that the cost 
achieved by spectral is better 
than twice the OPT cost

e … number of edges between A and B

Note: |A|<|B|



¡ Putting it all together: The Cheeger inequality
𝛽𝟐

𝟐𝒌𝒎𝒂𝒙
≤ 𝝀𝟐 ≤ 𝟐𝛽

§ where 𝑘��� is the maximum node degree 
in the graph
§ Note we only provide the 1st part:𝝀𝟐 ≤ 𝟐𝜷

§ We did not prove §𝟐

𝟐𝒌𝒎𝒂𝒙
≤ 𝝀𝟐

§ Overall this always certifies that 𝝀𝟐 always gives a 
useful bound
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¡ How to define a “good” partition of a graph?
§ Minimize a given graph cut criterion

¡ How to efficiently identify such a partition?
§ Approximate using information provided by the 

eigenvalues and eigenvectors of a graph

¡ Spectral Clustering
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¡ Three basic stages:
§ 1) Pre-processing

§ Construct a matrix representation of the graph

§ 2) Decomposition
§ Compute eigenvalues and eigenvectors of the matrix
§ Map each point to a lower-dimensional representation 

based on one or more eigenvectors

§ 3) Grouping
§ Assign points to two or more clusters, based on the new 

representation
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¡ 1) Pre-processing:
§ Build Laplacian

matrix L of the 
graph

¡ 2)
Decomposition:
§ Find eigenvalues l

and eigenvectors x
of the matrix L

§ Map vertices to 
corresponding 
components of x2
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How do we now 
find the clusters?

-0.66

-0.35

-0.34

0.33
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0.31

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2



¡ 3) Grouping:
§ Sort components of reduced 1-dimensional vector
§ Identify clusters by splitting the sorted vector in two

¡ How to choose a splitting point?
§ Naïve approaches: 

§ Split at 0 or median value
§ More expensive approaches:

§ Attempt to minimize normalized cut in 1-dimension 
(sweep over ordering of nodes induced by the eigenvector)
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0.31 Split at 0:
Cluster A: Positive points

Cluster B: Negative points
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A B
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¡ How do we partition a graph into k clusters?

¡ Two basic approaches:
§ Recursive bi-partitioning [Hagen et al., ’92]

§ Recursively apply bi-partitioning algorithm in a hierarchical 
divisive manner

§ Disadvantages: Inefficient, unstable
§ Cluster multiple eigenvectors [Shi-Malik, ’00]

§ Build a reduced space from multiple eigenvectors
§ Each node is now represented by 𝒌 numbers
§ We then cluster (apply k-means) the nodes based on their 𝒌-dim 

representation
§ Commonly used in recent papers
§ A preferable approach…
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¡ Approximates the optimal cut [Shi-Malik, ’00]
§ Can be used to approximate optimal k-way normalized cut

¡ Emphasizes cohesive clusters
§ Increases the unevenness in the distribution of the data
§ Associations between similar points are amplified, 

associations between dissimilar points are attenuated
§ The data begins to “approximate a clustering”

¡ Well-separated space
§ Transforms data to a new “embedded space”, 

consisting of k orthogonal basis vectors
¡ Multiple eigenvectors prevent instability due to 

information loss
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¡ Eigengap:
§ The difference between two consecutive eigenvalues

¡ Most stable clustering is generally given by the 
value k that maximizes eigengap 𝚫𝒌:

𝚫𝒌 = 𝝀𝒌 − 𝝀𝒌P𝟏
¡ Example:
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Þ Choose 
𝒌 = 𝟐

12max ll -=Dk

Note eigenvalues
are sorted in 
descending order





¡ What if we want our clustering based on other 
patterns (not edges)?
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

Small subgraphs (motifs, graphlets) are building 
blocks of networks [Milo et al., ’02]



Find modules based on motifs!

38

Network:

Motif:
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Different motifs reveal different 
modular structures!
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Generalize Cut and Volume to motifs:

40

𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡 𝑚𝑜𝑡𝑖𝑓𝑠 𝑐𝑢𝑡

𝑣𝑜𝑙(𝑆) =	#(edge	
end-points	in	S)

𝑣𝑜𝑙𝑀(𝑆) =	#(motif					
end-points	in	S)

𝜙 𝑆 =
#(𝑒𝑑𝑔𝑒𝑠 𝑐𝑢𝑡)

𝑣𝑜𝑙(𝑆) 𝜙 𝑆 =
#(𝑚𝑜𝑡𝑖𝑓𝑠 𝑐𝑢𝑡)

𝑣𝑜𝑙¾(𝑆)
[Benson, Gleich, Leskovec, Science, 2016]
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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How do we find clusters of motifs?
§ Given a motif 𝑴 and a graph 𝑮
§ Find a set of nodes 𝑺 that 

minimizes motif conductance

Bad news: Finding set 𝑺 with the minimal motif 
conductance is NP-hard!

42Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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Solution: Motif Spectral Clustering
§ Input: Graph 𝑮 and motif 𝑴
§ Using 𝑮 form a new weighted graph 𝑾(𝑴)

§ Apply spectral clustering on 𝑾(𝑴)

§ Output the clusters

Theorem: Resulting clusters will obtain near 
optimal motif conductance
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¡ Three steps:
§ 1) Pre-processing

§ 𝑊8:
(¾) = # times edge (𝑖, 𝑗) participates in the motif 𝑀

§ 2) Decomposition
§ Use standard spectral clustering (but on 𝑊(¾))

§ 3) Grouping
§ Same as standard spectral clustering
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

Graph G Weighted graph W(M)

See lecture 5 on 
motifs and the 
ESU algorithm for 
enumerating them



3
1

1
1

1 1

1

1 1

1 1

1

1

1
2

45

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

Graph 𝐺 Weighted graph 𝑊(¾)

Wij
(M) = # of times edge (i,j) participates in motif M
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Insight:
Spectral clustering on 
weighted graph W(M)

finds clusters of low 
motif conductance:
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).
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Weighted graph W(M)

Wij
(M) = # of times edge (i,j) participates in motif M
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Step 1: Given motif M. Form weighted graph 𝑊(¾)
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).
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Step 2: Apply spectral clustering:
Compute Fiedler vector 𝑥

associated with λ2 of the Laplacian of 𝐿(¾)

Set: 𝐿(¾) = 𝐷(¾) −𝑊(¾)

Compute: 𝐿(¾)𝑥 = 𝜆`𝑥
Use 𝑥 to identify communities
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Degree matrix

𝐷88
(¾) =9

:

𝑊8:
(¾)
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (13).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (15) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (13).

7

Step 3: Sort nodes by their values in 𝑥: x1, x2, …xn
Let Sr = {x1, …, xr} and compute the motif 

conductance of each Sr
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Theorem: The algorithm finds a set of nodes S 
for which

In other words: Clusters 𝑆 found by the method 
are provably near optimal

50

�M (S)  4
q

�⇤
M

�M (S)  4
q

�⇤
M

�M (S)  4
q

�⇤
M… motif conductance of S found by our algorithm

… motif conductance of optimal set S*
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¡ Generalization of community detection to 
higher-order structures

¡ Motif-conductance objective admits a motif 
Cheeger inequality

¡ Simple, fast, and scalable:
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Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).
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1) We don’t know a motif of interest
§ Food webs and new applications

2) We know the motif of interest 
§ Regulatory transcription networks, connectome, 

social networks
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motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
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framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).
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Florida Bay food web:
¡ Nodes: species in 

the ecosystem
¡ Edges: carbon exchange 

(who eats whom)
Different motifs capture different 
energy flow patterns:
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Which motif organizes the food web?
Approach:
¡ Run motif spectral clustering separately for 

each of the 13 motifs
¡ Examine the Sweep profile (next slide) to see 

which motif gives best clusters
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Figure 2: Higher-order organization of the Florida Bay food web. A: Motif conductance for
different motifs on the Florida Bay ecosystem food web (19). A priori it is not clear whether the
network is organized based on a given motif. For example, motifs M5 (green) and M8 (blue)
do not reveal any higher-order organization (motif conductance has high values). However,
the downward spikes of the red curve show that M6 reveals rich higher-order modular struc-
ture (27). The shape of the curve suggests that food webs might be organized based on the
motif M6. Ecologically, motif M6 corresponds to two species mutually feeding on each other
and also preying on a common third species. B: Clustering of the food web based on motif
M6. (For illustration, edges not participating in at least one instance of the motif are omitted.)
The clustering reveals three known aquatic layers: pelagic fishes (yellow), benthic fishes and
crabs (red), and sea-floor macroinvertebrates (blue) as well as a cluster of microfauna and detri-
tus (green). Our framework identifies these modules with higher accuracy (84%) than existing
methods (65–69%) (11). The clustering reveals that the energy flow pattern of motif M6 occurs
frequently within these modules and infrequently across these modules. For example, it is un-
common for two competitors from one aquatic layer to hunt each other and then have common
prey in a different layer. C: A higher-order cluster (yellow nodes in (B)) demonstrates how the
pelagic layer is organized based on the motif M6. The needlefish and other pelagic fishes eat
each other while several other fishes are prey for these two species. D: Organization of micro-
fauna cluster (green nodes in (B)) based on the motif M6. Here, several microfauna decompose
into Particulate Organic Carbon in the water (water POC) but also consume water POC. Free
bacteria serves as an energy source for both the microfauna and water POC.
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Observation:
Network organizes
based on motif M6 (but 
not M5 or M8)
¡ There exist good cuts 

for M6 but not for M5
or M8
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Figure 2: Higher-order organization of the Florida Bay food web. A: Motif conductance for
different motifs on the Florida Bay ecosystem food web (19). A priori it is not clear whether the
network is organized based on a given motif. For example, motifs M5 (green) and M8 (blue)
do not reveal any higher-order organization (motif conductance has high values). However,
the downward spikes of the red curve show that M6 reveals rich higher-order modular struc-
ture (27). The shape of the curve suggests that food webs might be organized based on the
motif M6. Ecologically, motif M6 corresponds to two species mutually feeding on each other
and also preying on a common third species. B: Clustering of the food web based on motif
M6. (For illustration, edges not participating in at least one instance of the motif are omitted.)
The clustering reveals three known aquatic layers: pelagic fishes (yellow), benthic fishes and
crabs (red), and sea-floor macroinvertebrates (blue) as well as a cluster of microfauna and detri-
tus (green). Our framework identifies these modules with higher accuracy (84%) than existing
methods (65–69%) (11). The clustering reveals that the energy flow pattern of motif M6 occurs
frequently within these modules and infrequently across these modules. For example, it is un-
common for two competitors from one aquatic layer to hunt each other and then have common
prey in a different layer. C: A higher-order cluster (yellow nodes in (B)) demonstrates how the
pelagic layer is organized based on the motif M6. The needlefish and other pelagic fishes eat
each other while several other fishes are prey for these two species. D: Organization of micro-
fauna cluster (green nodes in (B)) based on the motif M6. Here, several microfauna decompose
into Particulate Organic Carbon in the water (water POC) but also consume water POC. Free
bacteria serves as an energy source for both the microfauna and water POC.
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framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM ) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).
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M6 reveals known aquatic layers with 
higher accuracy (84% vs. 65%)
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Figure 2: Higher-order organization of the Florida Bay food web. A: Motif conductance for
different motifs on the Florida Bay ecosystem food web (19). A priori it is not clear whether the
network is organized based on a given motif. For example, motifs M5 (green) and M8 (blue)
do not reveal any higher-order organization (motif conductance has high values). However,
the downward spikes of the red curve show that M6 reveals rich higher-order modular struc-
ture (27). The shape of the curve suggests that food webs might be organized based on the
motif M6. Ecologically, motif M6 corresponds to two species mutually feeding on each other
and also preying on a common third species. B: Clustering of the food web based on motif
M6. (For illustration, edges not participating in at least one instance of the motif are omitted.)
The clustering reveals three known aquatic layers: pelagic fishes (yellow), benthic fishes and
crabs (red), and sea-floor macroinvertebrates (blue) as well as a cluster of microfauna and detri-
tus (green). Our framework identifies these modules with higher accuracy (84%) than existing
methods (65–69%) (11). The clustering reveals that the energy flow pattern of motif M6 occurs
frequently within these modules and infrequently across these modules. For example, it is un-
common for two competitors from one aquatic layer to hunt each other and then have common
prey in a different layer. C: A higher-order cluster (yellow nodes in (B)) demonstrates how the
pelagic layer is organized based on the motif M6. The needlefish and other pelagic fishes eat
each other while several other fishes are prey for these two species. D: Organization of micro-
fauna cluster (green nodes in (B)) based on the motif M6. Here, several microfauna decompose
into Particulate Organic Carbon in the water (water POC) but also consume water POC. Free
bacteria serves as an energy source for both the microfauna and water POC.
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Aquatic layers organize based on M6
¡ Many instances of M6 inside
¡ Few instances of M6 cross
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¡ Nodes are groups of genes in mRNA
¡ Edges are directed transcriptional regulation 

relationships

¡ The “feedforward loop” motif represents 
biological function [Alon ‘07]
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Figure S8: Higher-order organization of the S. cerevisiae transcriptional regulation network.
A: The four higher-order structures used by our higher-order clustering method, which can
model signed motifs. These are coherent feedfoward loop motifs, which act as sign-sensitive
delay elements in transcriptional regulation networks (46). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
which were previously studied individually (45). The higher-order clustering framework identi-
fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
Two higher-order clusters from (B). In these clusters, all edges have positive sign. The func-
tionality of the motifs in the modules correspond to drug resistance (C) or cell cycle and mating
type match (D). The clustering suggests that coherent feedforward loops function together as a
single processing unit rather than as independent elements.
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delay elements in transcriptional regulation networks (46). The edge signs refer to activation
(positive) or repression (negative). B: Six higher-order clusters revealed by the motifs in (A).
Clusters show functional modules consisting of several motifs (coherent feedforward loops),
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fies the functional modules with higher accuracy (97%) than existing methods (68–82%). C–D:
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¡ Feed forward loops:
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¡ METIS:
§ Heuristic but works really well in practice
§ http://glaros.dtc.umn.edu/gkhome/views/metis

¡ Graclus:
§ Based on kernel k-means
§ http://www.cs.utexas.edu/users/dml/Software/graclus.html

¡ Louvain:
§ Based on Modularity optimization
§ http://perso.uclouvain.be/vincent.blondel/research/louvain.html

¡ Clique percorlation method:
§ For finding overlapping clusters
§ http://angel.elte.hu/cfinder/
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