Spectral Clustering



Spectral Clustering Algorithms

Three basic stages:
1) Pre-processing
Construct a matrix representation of the graph
2) Decomposition
Compute eigenvalues and eigenvectors of the matrix

Map each point to a lower-dimensional representation
based on one or more eigenvectors

3) Grouping

Assign points to two or more clusters, based on the new
representation

But first, let’s define the problem
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Graph Partitioning

Undirected graph G(V, E):

Bi-partitioning task:

Divide vertices into two disjoint groups 4, B

A (5 ) B
@e) (o0

Questions:
How can we define a “good” partition of G?
How can we efficiently identify such a partition?
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Graph Partitioning

What makes a good partition?
Maximize the number of within-group
connections

Minimize the number of between-group
connections

A J B
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Graph Cuts

Express partitioning objectives as a function
of the “edge cut” of the partition

Cut: Set of edges with one endpoint in each
sroup: cut(A,B) = ZWI.J.

icA,jeB If the graph is weighted w;; is the
weight, otherwise, all w;€{0,1}

A B
- cut(4A,B) = 2
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Graph Cut Criterion

Criterion: Minimum-cut
Minimize weight of connections between groups
arg min, g cut(A,B)
Degenerate case:

“"Optimal” cut
/ Minimum cut

Problem:
Only considers external cluster connections
Does not consider internal cluster connectivity
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[Shi-Malik]

Graph Cut Criterion

Criterion: Conductance [Shi-Malik, '97]

Connectivity between groups relative to the density
of each group
cut(A, B)

#(4,B) =—
min(vol(A),vol(B))
vol(A): total weighted degree of the nodes in A:
vol(A) = Y.jea ki (number of edge end points in A)

Why use this criterion?
Produces more balanced partitions
How do we efficiently find a good partition?

Problem: Computing best conductance cut is NP-hard
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Spectral Graph Partitioning

A: adjacency matrix of undirected G
A;=1 if (i,j)is an edge, else 0
X is a vector in R” with components (x4, ..., X,,)

Think of it as a label/value of each node of G
What is the meaning of 4-x?

p— — p— — p— —

a, --- 4, |lX* Y

ZAw ), %

(i,j)EE

anl *e ann xn yn

Entry y; is a sum of labels x; of neighbors of i
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What is the Meaning of Ax?

. . _a a | _x | _x
j" coordinateof 4-x: | tn 11 !
: — | :

Sum of the x-values
of neighbors of j R O 0 | R B B

Make this a new x-valueatnodej A-Xx=4-X
Spectral Graph Theory:

Analyze the “spectrum” of matrix representing G

Spectrum: Eigenvectors x(Y of a graph, ordered by
the magnitude (strength) of their corresponding

eigenvaluesd;: A ={A,4,,...,4}
A<, <L,

Note: We sort 4; in ascending (not descending) order!
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Example: d-Reqular Graph

Suppose all nodes in G have degree d
(G is d-regular) and G is connected
What are some eigenvalues/vectors of G?

A-x =A-x Whatis A? What x?
Let'stry: x = (1,1,...,1)
Then:4-x =(d,d,..,d) =242-x. So:A=d
We found an eigenpair of G:

x = (11,..,1),A=d
d is the largest eigenvalue of A (see next slide)

Remember the meaning of y = 4- x:

Note, this is just one eigenpair. y; = ZAijxj _

An n by n matrix can have up to n eigenpairs. — £
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d is the Largest Eigenvalue of A

10/8/19

G is d-regular connected, A is its adjacency matrix
Claim:

(1) d has multiplicity of 1 (there is only 1 eigenvector
associated with eigenvalue d)

(2) d is the largest eigenvalue of A
Proof:
To obtain value eigval d we needed x; = x; for every i, j
Thismeansx = c - (1,1, ..., 1) for some const. ¢
Define: Set § = nodes i with maximum value of x;

Then consider some vector y which is not a multiple of
vector (1, ...,1). So not all nodes i (with labels y; ) arein §

Consider some node j € S and a neighbor i € S then
node j gets a value strictly less than d

So y is not eigenvector! And so d is the largest eigenvalue!
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Example: Graph on 2 Components

What if G is not connected? 4 A
C B

G has 2 components, each d-regular
What are some eigenvectors?

x = Put all 1s on € and 0Os on B or vice versa
x'=(@1,..,1,0,..,0TthenA-x'=(d,...,d0,..,0)7T
2 =00, 01" DT thend-x"=(0,..,0.d, .. d)T
And so in both cases the corresponding A = d

A bit of intuition:

2"d largest eigval.
C B C — B An,—1 NOW has
o value very close
tol,
An — An—l ~ 0
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More Intuition

2nd |argest eigval.
C B C — B An—1 NOW has
T value very close
to 4,
}*n - An—l An - /1”_1 ~ 0

If the d-regular graph is connected (right example) then
we already know that x,, = (1, ...1) is an eigenvector

Eigenvectors are orthogonal so then the components of
Xp—1 Mustsumto 0
Why? %, - X,_q = 0 then 3, 2, [i] - Xp_1[i] = ¥ Xp_y [i] =0
Xn—1 "splits” the nodes into two groups
Xn_1]i] > 0vs. x,,_41]i] <O
So we in principle could look at the eigenvector of the 2" largest

eigenvalue and declare nodes with positive label in C and negative
label in B. (but there are still many details for us to figure out here)
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Matrix Representations

Adjacency matrix (A4):
nxn matrix
A=[a;], a;=1 if edge between node i andj

Important properties:
Symmetric matrix
Has n real eigenvalues
Eigenvectors are real-valued and orthogonal
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Matrix Representations

Degree matrix (D):
nxn diagonal matrix
D=[d,], d;;= degree of node i
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Matrix Representations

Laplacian matrix (L):

nx n symmetric matrix

What is trivial eigenpair? ‘ L=D-A \

x=(1,..,1)thenL-x=0andsoA=4; =0
Important properties of L:

Eigenvalues are non-negative real numbers
Eigenvectors are real (and always orthogonal)
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3 Facts About the Laplacian L

(a) All eigenvalues are = 0
(b) x"Lx = ¥;; L;jx;x; = 0 for every x
(c) L can be writtenas L = NT - N
That is, L is positive semi-definite
Proof: (the 3 facts are saying the same thing)
(c)=>(b): x"Lx = x"NT"Nx = (Nx)"(Nx) = 0
As it is just the square of length of Nx

(b)=>(a): Let A be an eigenvalue of L. Then by (b)
xTLx > 0soxTLx=x"Ax =2xTx=>2>0

(a)=(c): is also easy! Do it yourself.
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A, as an Optimization Problem

See next slide

Fact: For symmetric matrix M: for the proof.
- Deriving this is
o . - Max a HW problem.
Ao =  mMIn —

x:xlw;=0
(w, is eigenvector corresponding to A,)

What is the meaning of minx' L x on G?
xTLox =Yy Lijxixg = X7 ioq (Dyj — Ayj) %%

=2 Diixi — Z(i,j)EE 2% X;

2
_ 2 2 __ — —
= Z(i,j)Engi + Xy 2x;X;) = Z(i,j)EE(xi Xj )
Y
Node i has degree d;. So, value x? needs to be summed up d; times.

But each edge (i, j) has two endpoints so we need x7 +x;
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Write x in basis of eigenvecs wy, w,, ..., w,, of M and A;
are corresponding eigenvalues. So, x = }.I' a;w;

Then we get: Mx = )., a;Mw; = ). ajA;w;
So, what is xT Mx? .

xT Mx

AL
T _ (—’ﬂT _
x'Mx = Zi a;W; @i (ZiAin = Zl] al-/'ljaj
_ 2 T 2
= Zi C(i )liW' W;,= Ziliai
=0ifi=+j,1otherwise _
Want minimize this over all unit vectors w:

W = min over choices of (a4, ... a;;) so that:

xTw; = 0, rewrite it as (3; a;w;) - w; = 0 and remember that

Wl-TWj = 0 (because w are eigenvectors). Then a; = 0

Zaiz = 1 (unit length)
So, to minimize this, set @, = 1 and the rest to 0 Y; 1;a% = 4,

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19



Finding x that Solves

What else do we know about x?
x is unit vector: Y; x7 = 1

x is orthogonal to 1%t eigenvector (1, ..., 1) thus:
Zixi -1 =Zixi =0

Remember:
2
.. X. —X
D
A, =min - 2
of nodes i so I xi
thathi=0

We want to assign values x; to nodes i such
that few edges cross 0.
(we want x; and x; to subtract each other) Balance to minimize
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Find Optimal Cut [Fiedler'73]

Back to finding the optimal cut
Express partition (A,B) as a vector

_|+1 ifie€eA

Yi=1-1 ifieB

Enforce that |[A| = |B| 2 X;y; = O
Equivalent to being orthogonal to the trivial eigenvector (1, ..., 1)

We can minimize the cut of the partition by finding
a vector y that minimizes:

arg _min  f) = ) (yi-)’

ye{—-1,+1}"

(i,j)EE M
Can’t solve exactly. Let’s relax y ; >

. .=—10 =
and allow it to take any real value. Vi 1 yj =+1
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ycR™ @ > . yi:of(y) Z(Z,J)EE(?J yj) y Ly

Yiyi =1 o VAV

X; 0 X; X
A, = miny, f(y): The minimum value of f(y) is

given by the 2" smallest eigenvalue A, of the
Laplacian matrix L

x = arg miny, f(y): The optimal solution for y is
given by the eigenvector x corresponding to A,,
referred to as the Fiedler vector

Can use sign of x; to determine cluster assignment
of node i
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Approx. Guarantee of Spectral

Suppose there is a partition of Ginto A and B
where |A| < |B], s.t. “conductance” of the cut
(A B) is ﬁ _ (# edges from A to B) then A, < Z,B

4] Note: |A|<|B|
This is the approximation guarantee of the spectral

clustering: Spectral finds a cut that has at most twice the
conductance as the optimal one of conductance .

Proof:
Let: a = |A|,b = |B|and e = # edges fromAto B
Enough to choose some x; based on A and B such that:

2
Ay < Z(;_xxzj) < 2f3 (while also };; x; = 0)

\ g} )

h 4
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Approx. Guarantee of Spectral

Proof (continued):

ificA

1

. . a

1) Let’s set: x; = +1 ificB Note: |A|<|B|
b

Let’s quickly verify that ,; x; = 0: a (—:11) + b (%) =0

2 2
2) Then: Z(xi._x);j)z = el (%? ) - e@? =
i a(—a) +b(5) a+b

1 1 1 1 2 .
e (— + _) <e (_ + _) —e ; < 2,8 Which proves that the cost

a b a a achieved by spectral is better
than twice the OPT cost
e ... number of edges between A and B
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Approx. Guarantee of Spectral

Putting it all together: The Cheeger inequality
IBZ
kaax

where k,, 4, is the maximum node degree
in the graph

<1, <2

Note we only provide the 15t part:4, < 2
BZ

kmax

We did not prove > <A,

Overall this always certifies that 4, always gives a
useful bound
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How to define a “good” partition of a graph?
Minimize a given graph cut criterion

How to efficiently identify such a partition?

Approximate using information provided by the
eigenvalues and eigenvectors of a graph

Spectral Clustering
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Spectral Clustering Algorithm

Three basic stages:
1) Pre-processing
Construct a matrix representation of the graph
2) Decomposition
Compute eigenvalues and eigenvectors of the matrix

Map each point to a lower-dimensional representation
based on one or more eigenvectors

3) Grouping

Assign points to two or more clusters, based on the new
representation
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Spectral Partitioning Algorithm

10/8/19

1) Pre-processing:

Build Laplacian >
matrix L of the @

graph

2)

Decomposition: < .

Find eigenvalues A

|
e I e e B e

and eigenvectors x —
of the matrix L

0.3
0.6

Map vertices to

() <) °) o | o o
o | @ &%) W o)) W

o |lo o ]o]o|oe
EN IR IR SO B S

3 0.3
components of x, s | o

-0.6
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Spectral Partitioning

3) Grouping:
Sort components of reduced 1-dimensional vector

|dentify clusters by splitting the sorted vector in two
How to choose a splitting point?

Naive approaches:
Split at 0 or median value

More expensive approaches:

Attempt to minimize normalized cut in 1-dimension
(sweep over ordering of nodes induced by the eigenvector)

03 Split at 0:

0.6 Cluster A: Positive points
0.3 '

Cluster B: Negative points Y _
-0.3 1 0.3 4 | -03 DR g
-0.3 2 0.6 5 | -03

-0.6 3 0.3 6 | -06
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Example: Spectral Partitioning

. Components of x,

 —
-

o
RN

-0.1r

Value of x,

-0.2r

-0.3

-04
0

110 ‘II5 210
Rank in x,

m_
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Example: Spectral Partitioning

Value of x,

| 1 | 1 | 1 |
0 5 10 15 20 25 30 35 40

Rank in x,
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Example: Spectral Partitioning

Components of x;
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k-Way Spectral Clustering

How do we partition a graph into & clusters?

Two basic approaches:

Recursive bi-partitioning [Hagen et al., 92

Recursively apply bi-partitioning algorithm in a hierarchical
divisive manner

Disadvantages: Inefficient, unstable

Cluster multiple eigenvectors [Shi-Malik, "00]

Build a reduced space from multiple eigenvectors
Each node is now represented by k numbers

We then cluster (apply k-means) the nodes based on their k-dim
representation

Commonly used in recent papers
A preferable approach...
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Why Use Multiple Eigenvectors?

Approximates the optimal cut [Shi-Malik, '00]

Can be used to approximate optimal A~~way normalized cut
Emphasizes cohesive clusters
Increases the unevenness in the distribution of the data

Associations between similar points are amplified,
associations between dissimilar points are attenuated

The data begins to “approximate a clustering”
Well-separated space

Transforms data to a new “embedded space”,
consisting of k orthogonal basis vectors

Multiple eigenvectors prevent instability due to
information loss
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How to Select k?

Eigengap:
The difference between two consecutive eigenvalues
Most stable clustering is generally given by the

value &k that maximizes eigengap A,: Note eigenvales
Ak — |Ak . Ak_]_l are sorted in

descending order

Example:
o1 M A, =1, —
] &~ =1 = A
;rfz A, — Choose
L k=2
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Motif-Based Spectral
Clustering



Motif-based spectral clustering

What if we want our clustering based on other
patterns (not edges)?

U

/\ /\ /\ /\ /\

Small subgraphs (motlfs graphlets) are building
blocks of networks [Milo et al., "02]
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Topic 1: Modules of Motifs

Find modules based on motifs!

Network:

B o o,

Motif:
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Modules of Motifs

VAU,
C=%

Different motifs reveal different
modular structures!
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Defining Motif Conductance

Generalize Cut and Volume to motifs:

edges cut Q7ZQ motifs cut %

vol(S) = #(edge vol,,(S) = #(motif
end-points in S) end-points in S)
#(edges cut) #(motifs cut)
P(S) = P(S) =
vol(S) voly (S)

[Benson, Gileich, Leskovec, Science, 2016]
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Motif Conductance: Example

Motif:

/\

L\ motifs cut

om(S) -
motif volume
Jure Leskovec, Stanford CS224W: Machine Learning with Grap
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Higher-order Partitioning

How do we find clusters of motifs?

Given a motif M and a graph G

Find a set of nodes § that
minimizes motif conductance

/43 motifs cut
motif volume

Pm(S) =

Bad news: Finding set § with the minimal motif
conductance is NP-hard!
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Motif Spectral Clustering

Solution: Motif Spectral Clustering
Input: Graph G and motif M
Using G form a new weighted graph W)

Apply spectral clustering on W)
Output the clusters

Theorem: Resulting clusters will obtain near
optimal motif conductance
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Optimizing Motif Conductance

Three steps:
1) Pre- processing

See lecture 5 on
motifs and the
ESU algorithm for
enumerating them

Graph G Weighted graph WM)

2) Decomposition

Use standard spectral clustering (but on W D))
3) Grouping

Same as standard spectral clustering
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Motif Spectral Clustering

Weighted graph W)

W,M = # of times edge (i,j) participates in motif M
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Motif Spectral Clustering

Insight:

Spectral clustering on
weighted graph WM
finds clusters of low
motif conductance:

/3 motifs cut
motif volume Weighted graph WM

Pm(S) =

W,M = # of times edge (i,j) participates in motif M

10/8/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

46



Step 1: Create W

1 2 3 4 5 6 7 8 910

O3 1110000 0T

23 011111000
311100000000

2111 000000O00O

— 5011100000000
6|10 100001110
ZIO1T0O001T00O00O0

sl0 000010021

al0 000010201

/ 00000000110

Step 1: Given motif M. Form weighted graph W M)
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Step 2: Apply Spectral Clust to WW

Step 2: Apply spectral clustering:
Compute Fiedler vector x

associated with A, of the Laplacian of L(™)

Set: L(M) = pM) — (M) Degreematrx |
Compute: LMx = A,x i = 0,

Use x to identify communities
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Step 3: Grouping (Sweep Procedure)

Best higher-order cluster

Step 3: Sort nodes by their values in x: x;, X, ...x,
Let S, = {x,, ..., x,} and compute the motif
conductance of each S,
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Motif Cheeger Inequality

Theorem: The algorithm finds a set of nodes S
for which

om(S) < 44/ o7,

om(S)... motif conductance of S found by our algorithm
Pm ... motif conductance of optimal set S*

In other words: Clusters S found by the method
are provably near optimal
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Summary

Generalization of community detection to
higher-order structures

Motif-conductance objective admits a motif
Cheeger inequality

Simple, fast, and scalable:

Best higher-order cluster

12345678 910 I o

10 1000 007
2 0 111000
3 000000O0O
4 00000O0O0O0O
] 00000O0O0OO

) 0 (

) 0 0000

) 00 00

%’i
So® NGOG N
‘cooco — = o
O
— =
—_—

—

—

—

0 =(45,1,3,2,7,6,9,8,10)
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Two Examples

1) We don’t know a motif of interest
Food webs and new applications

2) We know the motif of interest

Regulatory transcription networks, connectome,
social networks

10/8/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52



Application 1: Food webs

Florida Bay food web:

Nodes: species in

the ecosystem

Edges: carbon exchange

(who eats whom)
Different motifs capture different
energy flow patterns:

AN
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Florida Bay Food Web

Which motif organizes the food web?
Approach:
Run motif spectral clustering separately for
each of the 13 motifs
Examine the Sweep profile (next slide) to see
which motif gives best clusters
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Food Web: Observations

Observation:

Network organizes |

based on motif Mg (but = \

not M. or M) S
There exist good cuts . e A
for M¢ but not for M.
or Mg

2N A
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ood Web: Clusters

Benthic Fishes.

Sponges
Zooplankton @ & Acartia Tonsa
Detritivorous Clown Goby > ‘
Crabs l <@ Oithona nana
Lizardfish Code Goby
=2 +® Paracalanus
HeI'bIVOI’OUS Shnm Eels i i
g D v Callinactus Sapl?/:';;er pdc »® Water Flagellates
/‘ / 9
Predatory Crabs @
3/ Free Bacteria »® Water Cilitaes
Ommvorous Crabs Bivalves ®
Iy Syring.odium ® Catfish *® Other Copepoda
A
]
Predatory‘Shrimp NG Input
Pink Shri ® Thalassia - ®
R Yo Ui e * 'Mi€ronutrient
Toadfish ¥ Herbivorous .
&/ Amphipods ‘o/’ Halodule Predatory Gastropods

Other Demersal o

/ Suspension

Fishes
[~ Feeding Polych
/I L ':0.5
/
Predatory ¥
0 el
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Mg reveals known aquatic layers with
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higher accuracy (84% vs. 65%)... .



Structure of Aquatic Layers
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(2) Gene Regulatory Networks

Nodes are groups of genes in mRNA
Edges are directed transcriptional regulation
relationships

The “feedforward loop” motif represents
biological function [Alon ‘07]
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Yeast Regulatory Network
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97% detection accuracy (vs. 68-82%)
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Structure of Modules
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Feed forward loops:
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Many other partitioning methods
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Heuristic but works really well in practice
http://glaros.dtc.umn.edu/gkhome/views/metis

Based on kernel k-means
http://www.cs.utexas.edu/users/dml/Software/graclus.html

Based on Modularity optimization
http://perso.uclouvain.be/vincent.blondel/research/louvain.html

For finding overlapping clusters
http://angel.elte.hu/cfinder/
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