Spectral Clustering

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Spectral Clustering Algorithms

Three basic stages:

- 1) Pre-processing
 - Construct a matrix representation of the graph
- 2) Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
- 3) Grouping
 - Assign points to two or more clusters, based on the new representation
- But first, let's define the problem

Graph Partitioning

• Undirected graph G(V, E):

- Bi-partitioning task:
 - Divide vertices into two disjoint groups A, B

- Questions:
 - How can we define a "good" partition of G?
 - How can we efficiently identify such a partition?

Graph Partitioning

- What makes a good partition?
 - Maximize the number of within-group connections
 - Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with one endpoint in each

group:
$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

If the graph is weighted w_{ij} is the weight, otherwise, all $w_{ii} \in \{0,1\}$

Graph Cut Criterion

- Criterion: Minimum-cut
 - Minimize weight of connections between groups
 arg min_{A,B} cut(A,B)
- Degenerate case:

- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity

Graph Cut Criterion

- Criterion: Conductance [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$\phi(A,B) = \frac{cut(A,B)}{\min(vol(A),vol(B))}$$

vol(A): total weighted degree of the nodes in A: $vol(A) = \sum_{i \in A} k_i$ (number of edge end points in A)

- Why use this criterion?
 - Produces more balanced partitions
- How do we efficiently find a good partition?
 - Problem: Computing best conductance cut is NP-hard

Spectral Graph Partitioning

- A: adjacency matrix of undirected G
 - A_{ij} =1 if (i, j) is an edge, else 0
- x is a vector in \Re^n with components $(x_1, ..., x_n)$
 - Think of it as a label/value of each node of G
- What is the meaning of $A \cdot x$?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y_i = \sum_{j=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j$$

• Entry y_i is a sum of labels x_j of neighbors of i

What is the Meaning of Ax?

- - of neighbors of *i*

•
$$j^{th}$$
 coordinate of $A \cdot x$:

• Sum of the x -values of neighbors of i

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

• Make this a new x-value at node j

$$A \cdot x = \lambda \cdot x$$

- Spectral Graph Theory:
 - \blacksquare Analyze the "spectrum" of matrix representing G
 - Spectrum: Eigenvectors $x^{(i)}$ of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i : $\Lambda = {\lambda_1, \lambda_2, ..., \lambda_n}$

$$\lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

Note: We sort λ_i in ascending (not descending) order!

Example: d-Regular Graph

- Suppose all nodes in G have degree d (G is d-regular) and G is connected
- What are some eigenvalues/vectors of G?

$$A \cdot x = \lambda \cdot x$$
 What is λ ? What x ?

- Let's try: x = (1, 1, ..., 1)
- Then: $A \cdot x = (d, d, ..., d) = \lambda \cdot x$. So: $\lambda = d$
- We found an eigenpair of G:

$$x = (1, 1, ..., 1), \lambda = d$$

d is the largest eigenvalue of A (see next slide)

Remember the meaning of $y = A \cdot x$:

Note, this is just one eigenpair.

10/8/19

An n by n matrix can have up to n eigenpairs.

 $y_i = \sum_{j=1}^{n} A_{ij} x_j = \sum_{(i,j) \in F} x_j$

d is the Largest Eigenvalue of A

- ullet $oldsymbol{G}$ is $oldsymbol{d}$ -regular connected, $oldsymbol{A}$ is its adjacency matrix
- Claim:
 - (1) d has multiplicity of 1 (there is only 1 eigenvector associated with eigenvalue d)
 - (2) d is the largest eigenvalue of A
- Proof:
 - lacksquare To obtain value eigval $oldsymbol{d}$ we needed $oldsymbol{x_i} = oldsymbol{x_j}$ for every i,j
 - This means $x = c \cdot (1,1,...,1)$ for some const. c
 - **Define:** Set S = nodes i with maximum value of x_i
 - Then consider some vector y which is not a multiple of vector (1, ..., 1). So not all nodes i (with labels y_i) are in S
 - Consider some node $j \in S$ and a neighbor $i \notin S$ then node j gets a value strictly less than d
 - So y is not eigenvector! And so d is the largest eigenvalue!

Example: Graph on 2 Components

What if G is not connected?

What are some eigenvectors?

- x = Put all 1s on C and 0s on B or vice versa
 - $x' = (\underline{1, ..., 1}, \underline{0, ..., 0})^T$ then $A \cdot x' = (d, ..., d, 0, ..., 0)^T$ $x'' = (\underline{0, ..., 0}, \underline{1, ..., 1})^T$ then $A \cdot x'' = (\underline{0, ..., 0}, d, ..., d)^T$

 - And so in both cases the corresponding $\lambda = d$

A bit of intuition:

$$\lambda_n - \lambda_{n-1} \approx 0$$

2nd largest eigval. λ_{n-1} now has value very close to λ_n

More Intuition

 2^{nd} largest eigval. λ_{n-1} now has value very close to λ_n

- If the d-regular graph is connected (right example) then we already know that $x_n = (1, ... 1)$ is an eigenvector
- Eigenvectors are orthogonal so then the components of x_{n-1} must sum to ${\bf 0}$
 - Why? $x_n \cdot x_{n-1} = 0$ then $\sum_i x_n[i] \cdot x_{n-1}[i] = \sum_i x_{n-1}[i] = 0$
 - x_{n-1} "splits" the nodes into two groups
 - $x_{n-1}[i] > 0$ vs. $x_{n-1}[i] < 0$
 - So we in principle could look at the eigenvector of the 2nd largest eigenvalue and declare nodes with positive label in C and negative label in B. (but there are still many details for us to figure out here)

Matrix Representations

- Adjacency matrix (A):
 - $\blacksquare n \times n$ matrix
 - $A=[a_{ij}], a_{ij}=1$ if edge between node i and j

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

- Important properties:
 - Symmetric matrix
 - Has n real eigenvalues
 - Eigenvectors are real-valued and orthogonal

Matrix Representations

- Degree matrix (D):
 - $n \times n$ diagonal matrix
 - $D=[d_{ii}], d_{ii}=$ degree of node i

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
 - $\blacksquare n \times n$ symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

L = D - A

- What is trivial eigenpair?
 - x=(1,...,1) then $L\cdot x=0$ and so $\lambda=\lambda_1=0$
- Important properties of L:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real (and always orthogonal)

3 Facts About the Laplacian L

- (a) All eigenvalues are ≥ 0
- **(b)** $x^T L x = \sum_{ij} L_{ij} x_i x_j \ge 0$ for every x
- (c) L can be written as $L = N^T \cdot N$
 - That is, L is positive semi-definite
- Proof: (the 3 facts are saying the same thing)
 - (c) \Rightarrow (b): $x^T L x = x^T N^T N x = (Nx)^T (Nx) \ge 0$
 - As it is just the square of length of Nx
 - **(b)** \Rightarrow **(a)**: Let λ be an eigenvalue of L. Then by **(b)** $x^T L x \ge 0$ so $x^T L x = x^T \lambda x = \lambda x^T x \Rightarrow \lambda \ge 0$
 - (a) \Rightarrow (c): is also easy! Do it yourself.

λ₂ as an Optimization Problem

■ Fact: For symmetric matrix *M*:

$$\lambda_2 = \min_{x : x^T w_1 = 0} \frac{x^T M x}{x^T x}$$

See next slide for the proof. Deriving this is a HW problem.

($\mathbf{w_1}$ is eigenvector corresponding to λ_1)

• What is the meaning of min $x^T L x$ on G?

$$x^T L x = \sum_{i,j=1}^n L_{ij} x_i x_j = \sum_{i,j=1}^n (D_{ij} - A_{ij}) x_i x_j$$

$$= \sum_{i} D_{ii} x_i^2 - \sum_{(i,j) \in E} 2x_i x_j$$

$$= \sum_{(i,j)\in E} (x_i^2 + x_j^2 - 2x_i x_j) = \sum_{(i,j)\in E} (x_i - x_j)^2$$

Node i has degree d_i . So, value x_i^2 needs to be summed up d_i times. But each edge (i,j) has two endpoints so we need $x_i^2 + x_j^2$

Proof:
$$\lambda_2 = \min_{x: x^T w_1 = 0} rac{x^T M x}{x^T x}$$

- Write x in basis of eigenvecs $w_1, w_2, ..., w_n$ of **M** and λ_i are corresponding eigenvalues. So, $x = \sum_{i=1}^{n} \alpha_{i} w_{i}$
- Then we get: $Mx = \sum_i \alpha_i M w_i = \sum_i \alpha_i \lambda_i w_i$
- So, what is $x^T M x$?

$$x^{T} M x = (\sum_{i} \alpha_{i} w_{i})^{T} (\sum_{i} \alpha_{i} \lambda_{i} w_{i}) = \sum_{ij} \alpha_{i} \lambda_{j} \alpha_{j}$$

$$= \sum_{i} \alpha_{i}^{2} \lambda_{i} w_{i}^{T} w_{i} = \sum_{i} \lambda_{i} \alpha_{i}^{2}$$

$$= 0 \text{ if } i \neq j, 1 \text{ otherwise}$$

- Want minimize this over all unit vectors w:
 - \boldsymbol{w} = min over choices of $(\alpha_1, ... \alpha_n)$ so that:
 - $\mathbf{x}^T w_1 = 0$, rewrite it as $(\sum_i \alpha_i w_i) \cdot w_1 = 0$ and remember that $w_i^T w_i = 0$ (because w are eigenvectors). Then $\alpha_1 = 0$
 - $\sum \alpha_i^2 = 1$ (unit length)
- So, to minimize this, set $\alpha_2 = 1$ and the rest to $0 \sum_i \lambda_i \alpha_i^2 = \lambda_2$

Finding x that Solves

$$\lambda_2 = \min_{x \ : \ x^T w_1 = 0} rac{x^T M x}{x^T x}$$

What else do we know about x?

- x is unit vector: $\sum_i x_i^2 = 1$
- x is orthogonal to 1^{st} eigenvector (1, ..., 1) thus:

$$\sum_{i} x_i \cdot \mathbf{1} = \sum_{i} x_i = \mathbf{0}$$

Remember:

$$\lambda_{2} = \min_{\substack{\text{All labelings} \\ \text{of nodes } i \text{ so} \\ \text{that } \Sigma x_{i} = 0}} \frac{\sum_{(i,j) \in E} (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2}}$$

We want to assign values x_i to nodes i such that few edges cross 0. (we want x_i and x_i to subtract each other)

Balance to minimize

Find Optimal Cut [Fiedler'73]

- Back to finding the optimal cut
- Express partition (A,B) as a vector

$$y_i = \begin{cases} +1 & if \ i \in A \\ -1 & if \ i \in B \end{cases}$$

- Enforce that $|A| = |B| \rightarrow \Sigma_i y_i = 0$
 - Equivalent to being orthogonal to the trivial eigenvector (1, ..., 1)
- We can minimize the cut of the partition by finding a vector y that minimizes:

$$\arg\min_{y\in\{-1,+1\}^n} f(y) = \sum_{(i,j)\in E} (y_i - y_j)^2$$

$$\text{Is solve exactly. Let's relax } y$$

Can't solve exactly. Let's relax y and allow it to take any real value.

Rayleigh Theorem

$$\lambda_2 = \min_{x: x^T w_1 = 0} \frac{x^T M x}{x^T x}$$

Slide 18

$$\min_{y \in \mathbb{R}^n : \sum_i y_i = 0} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

$$\sum_i y_i^2 = 1$$

$$\sum_{x_i} y_i = 1$$

- $\lambda_2 = \min_y f(y)$: The minimum value of f(y) is given by the 2nd smallest eigenvalue λ_2 of the Laplacian matrix L
- $\mathbf{x} = \underset{\mathbf{y}}{\operatorname{arg\,min}_{\mathbf{y}}} f(\mathbf{y})$: The optimal solution for \mathbf{y} is given by the eigenvector \mathbf{x} corresponding to λ_2 , referred to as the Fiedler vector
- Can use sign of x_i to determine cluster assignment of node i

Approx. Guarantee of Spectral

- Suppose there is a partition of **G** into **A** and **B** where $|A| \le |B|$, s.t. "conductance" of the cut (A,B) is $\beta = \frac{(\# \ edges \ from \ A \ to \ B)}{|A|}$ then $\lambda_2 \le 2\beta$ Note: |A| < |B|
 - This is the approximation guarantee of the spectral clustering: Spectral finds a cut that has at most **twice the conductance** as the optimal one of conductance β .
- Proof:
 - Let: a=|A| , b=|B| and e=# edges from A to B
 - Enough to choose some x_i based on A and B such that:

$$\lambda_{2} \leq \frac{\sum (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2}} \leq 2\beta \text{ (while also } \sum_{i} x_{i} = 0)$$

$$\lambda_{2} \text{ is only smaller}$$

$$\lambda_{2} \text{ Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu}$$

pprox. Guarantee of Spectral

Proof (continued):

Note: |A|<|B|

• Let's quickly verify that $\sum_i x_i = 0$: $a\left(-\frac{1}{a}\right) + b\left(\frac{1}{b}\right) = \mathbf{0}$

■ 2) Then:
$$\frac{\sum (x_i - x_j)^2}{\sum_i x_i^2} = \frac{\sum_{i \in A, j \in B} \left(\frac{1}{b} + \frac{1}{a}\right)^2}{a\left(-\frac{1}{a}\right)^2 + b\left(\frac{1}{b}\right)^2} = \frac{e \cdot \left(\frac{1}{a} + \frac{1}{b}\right)^2}{\frac{1}{a} + \frac{1}{b}} = e\left(\frac{1}{a} + \frac{1}{b}\right) \le e\left(\frac{1}{a} + \frac{1}{a}\right) = e\left(\frac{2}{a}\right) \le e\left(\frac{1}{a} + \frac{1}{a}\right) = e\left(\frac{2}{a}\right)$$
Which proves that the cost achieved by spectral is better.

$$e\left(\frac{1}{a} + \frac{1}{b}\right) \le e\left(\frac{1}{a} + \frac{1}{a}\right) = e^{\frac{2}{a}} \le 2\beta$$

achieved by spectral is better than twice the OPT cost

e ... number of edges between A and B

Approx. Guarantee of Spectral

Putting it all together: The Cheeger inequality

$$\frac{\beta^2}{2k_{max}} \le \lambda_2 \le 2\beta$$

- where k_{max} is the maximum node degree in the graph
 - Note we only provide the 1st part: $\lambda_2 \leq 2\beta$
 - We did not prove $\frac{\beta^2}{2k_{max}} \leq \lambda_2$
- lacktriangle Overall this always certifies that λ_2 always gives a useful bound

So far...

- How to define a "good" partition of a graph?
 - Minimize a given graph cut criterion
 - How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph
 - Spectral Clustering

Spectral Clustering Algorithm

Three basic stages:

- 1) Pre-processing
 - Construct a matrix representation of the graph
- 2) Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
- 3) Grouping
 - Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

1) Pre-processing:

 Build Laplacian matrix L of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

2) Decomposition:

X =	0.4	0.3	-0.5	-0.2	-0.4	-0.5
	0.4	0.6	0.4	-0.4	0.4	0.0
	0.4	0.3	0.1	0.6	-0.4	0.5
	0.4	-0.3	0.1	0.6	0.4	-0.5
	0.4	-0.3	-0.5	-0.2	0.4	0.5
	0.4	-0.6	0.4	-0.4	-0.4	0.0

Map vertices to
corresponding
components of X ₂

of the matrix L

Find eigenvalues λ

and eigenvectors x

0.3
0.6
0.3
-0.3
-0.3
-0.6

How do we now find the clusters?

Spectral Partitioning

- 3) Grouping:
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0 or median value
 - More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

Split at 0:

Cluster A: Positive points

Cluster B: Negative points

1	0.3
2	0.6
3	0.3

4	-0.3
5	-0.3
6	-0.6

Example: Spectral Partitioning

Example: Spectral Partitioning

Example: Spectral Partitioning

k-Way Spectral Clustering

- How do we partition a graph into k clusters?
- Two basic approaches:
 - Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Each node is now represented by k numbers
 - lacktriangle We then cluster (apply k-means) the nodes based on their $m{k}$ -dim representation
 - Commonly used in recent papers
 - A preferable approach...

Why Use Multiple Eigenvectors?

- Approximates the optimal cut [Shi-Malik, '00]
 - Can be used to approximate optimal k-way normalized cut
- Emphasizes cohesive clusters
 - Increases the unevenness in the distribution of the data
 - Associations between similar points are amplified, associations between dissimilar points are attenuated
 - The data begins to "approximate a clustering"
- Well-separated space
 - Transforms data to a new "embedded space", consisting of k orthogonal basis vectors
- Multiple eigenvectors prevent instability due to information loss

How to Select k?

Eigengap:

- The difference between two consecutive eigenvalues
- Most stable clustering is generally given by the value k that maximizes eigengap Δ_k :

$$\Delta_k = |\lambda_k - \lambda_{k-1}|$$

Note eigenvalues are sorted in descending order

Example:

Motif-Based Spectral Clustering

Motif-based spectral clustering

What if we want our clustering based on other patterns (not edges)?

Small subgraphs (motifs, graphlets) are building blocks of networks [Milo et al., '02]

Topic 1: Modules of Motifs

Find modules based on motifs!

Network:

Modules of Motifs

Different motifs reveal different modular structures!

Defining Motif Conductance

Generalize Cut and Volume to motifs:

edges cut

$$vol(S) = \#(edge end-points in S)$$

$$vol_M(S) = \#(motif end-points in S)$$

$$\phi(S) = \frac{\#(edges\ cut)}{vol(S)}$$

$$\phi(S) = \frac{\#(motifs\ cut)}{vol_M(S)}$$

Motif Conductance: Example

Higher-order Partitioning

How do we find clusters of motifs?

- lacksquare Given a motif $m{M}$ and a graph $m{G}$
- Find a set of nodes S that minimizes motif conductance

$$\phi_{M}(S) = \frac{1}{\text{motifs cut}}$$

Bad news: Finding set *S* with the minimal motif conductance is NP-hard!

Motif Spectral Clustering

Solution: Motif Spectral Clustering

- Input: Graph G and motif M
- lacksquare Using $m{G}$ form a new weighted graph $m{W}^{(m{M})}$
- Apply spectral clustering on $W^{(M)}$
- Output the clusters

Theorem: Resulting clusters will obtain near optimal motif conductance

Optimizing Motif Conductance

Three steps:

- 1) Pre-processing
 - $W_{ij}^{(M)}$ = # times edge (i,j) participates in the motif M

See lecture 5 on motifs and the ESU algorithm for enumerating them

- 2) Decomposition
 - Use standard spectral clustering (but on $W^{(M)}$)
- 3) Grouping
 - Same as standard spectral clustering

Motif Spectral Clustering

 $W_{ij}^{(M)} = \#$ of times edge (i,j) participates in motif M

Motif Spectral Clustering

Insight:

Spectral clustering on weighted graph W^(M) finds clusters of low motif conductance:

$$\phi_{M}(S) = \frac{1}{\text{motifs cut}}$$

 $W_{ii}^{(M)} = \#$ of times edge (i,j) participates in motif M

Step 1: Create W

Step 1: Given motif M. Form weighted graph $W^{(M)}$

Step 2: Apply Spectral Clust to W(M)

Step 2: Apply spectral clustering: Compute Fiedler vector \mathbf{x} associated with λ_2 of the Laplacian of $L^{(M)}$

Set: $L^{(M)} = D^{(M)} - W^{(M)}$

Compute: $L^{(M)}x = \lambda_2 x$

Use x to identify communities

Degree matrix $D_{ii}^{(M)} = \sum_{j} W_{ij}^{(M)}$

Step 3: Grouping (Sweep Procedure)

Step 3: Sort nodes by their values in x: x_1 , x_2 , ... x_n Let $S_r = \{x_1, ..., x_r\}$ and compute the motif conductance of each S_r

Motif Cheeger Inequality

Theorem: The algorithm finds a set of nodes S for which

$$\phi_{M}(S) \leq 4\sqrt{\phi_{M}^{*}}$$

 $\phi_{M}(S)$... motif conductance of S found by our algorithm ϕ_{M}^{*} ... motif conductance of optimal set S*

In other words: Clusters S found by the method are provably near optimal

Summary

- Generalization of community detection to higher-order structures
- Motif-conductance objective admits a motif
 Cheeger inequality
- Simple, fast, and scalable:

Two Examples

1) We don't know a motif of interest

Food webs and new applications

2) We know the motif of interest

 Regulatory transcription networks, connectome, social networks

Application 1: Food webs

Florida Bay food web:

- Nodes: species in the ecosystem
- Edges: carbon exchange (who eats whom)

Different motifs capture different energy flow patterns:

Florida Bay Food Web

Which motif organizes the food web? Approach:

- Run motif spectral clustering separately for each of the 13 motifs
- Examine the Sweep profile (next slide) to see which motif gives best clusters

Florida Bay Food Web

Food Web: Observations

Observation:

Network organizes based on motif M_6 (but not M_5 or M_8)

 There exist good cuts for M₆ but not for M₅ or M₈

Food Web: Clusters

10/8/19

M₆ reveals known aquatic layers with higher accuracy (84% vs. 65%).

Structure of Aquatic Layers

Aquatic layers organize based on M₆

- Many instances of M₆ inside
- Few instances of M₆ cross

(2) Gene Regulatory Networks

- Nodes are groups of genes in mRNA
- Edges are directed transcriptional regulation relationships

 The "feedforward loop" motif represents biological function [Alon '07]

Yeast Regulatory Network

10/8/19

Structure of Modules

Feed forward loops:

Cell cycle and mating type switch

Many other partitioning methods

METIS:

- Heuristic but works really well in practice
- http://glaros.dtc.umn.edu/gkhome/views/metis

Graclus:

- Based on kernel k-means
- http://www.cs.utexas.edu/users/dml/Software/graclus.html

Louvain:

- Based on Modularity optimization
- http://perso.uclouvain.be/vincent.blondel/research/louvain.html

Clique percorlation method:

- For finding overlapping clusters
- http://angel.elte.hu/cfinder/